

MANAGING OPERATION PROCEDURES IN COLLABORATIVE PROJECTS

Marie-Gabrielle Beuzelin Ollivier Ecole Polytechnique Fédérale de Lausanne

Alessandra Hool MatSearch Consulting

Introduction

- NanoDiaRA: development of nanoparticles and biomarkers for early in vivo diagnosis of inflammatory diseases.
- 15 partners, using NPs in biology, biotechnology, medicine, physics and microtechnology.
- Requirements: transparency and reproducibility of the scientific and technological outcome in the different research fields.
- Challenge with Nanotoxicology: it's a non-regulated area, not all methods are established.

Sample exchange in NanoDiaRA

Particles, Molecules & Cells · Diagnosis in-vitro

& in-vivo · Rheumatoid Arthritis & Osteoarthritis

FÉDÉRALE DE LAUSANNE

SEVENTH FRAMEWORK

How to meet the challenges?

- What such a consortium need is an easy solution, a combined answer
 - Lab scale → Standard Operating Procedures (SOPs) and their management
 - □ Project level → Electronic Sample Book (ESB)

Lab book

- Purpose:
 - Organizational tool
 - Memory aid
 - Documentation for Intellectual property (IP) questions

SHINATURE

CONFIDENTIAL

Lab book

Lab book

- □ Often left aside, filled up weeks after the experiment → Prepare an explicative SOP
- Lack of information:
 - Explanation of the experiment purpose missing.
 - □ Figures missing titles, axis description.
 - Troubleshooting: even little details make the difference.
 - Conclusions: need to plan future experiments.
 - → Lab book should be checked and signed every week by supervisors.
 - →Use of SOPs

SOPs Standard Operating Procedures

SOPs tell people what to do, and how to do it*

*Edy V and Gamlen M 1994 Standard Operating Procedures Good Clinical, Laboratory and Manufacturing Practices: Techniques for the QA Professional ed Carson P and Dent N (Cambridge: The Royal Society of Chemistry) chapter 27 pp 387-398.

SOPs: Why?

- Part of control process
- Protocols are present in labs, but always with different version, people have their own recipes
- Collaborators may have broad background from different fields
- In collaborative projects: physical distance

SOPs: Content

- Contain a quick description of the procedure
- Material (consumables, chemicals) and equipment used
- Method with a clear walk-through without too much details
- Adaptation for different use (ex: for in vivo proceed ..., for in vitro...)
- Picture may be included for better understanding

SOPs: Template

- Naming: Type, number, version, title
- Author and responsible person
- When does the document become effective?
- Replaces other document?
- Summary
- Used Materials
- Step by step procedure

TITLE DRAFT

	Function	Name	Date / Signature
Author	Document control	Marie-Gabrielle Beuzelin Ollivier	
Approvals	Director LTP	Pr Heinrich Hofmann	

SOP No.	SOPS PR x-vQ
Becomes effective on	
Document being replaced	Previous version from date by initials

SUMMARY

This following protocol describes

MATERIALS REQUIRED

INSTRUMENTS

- 1 99
- 2. cc (Brand, product number)

CONSUMABLE

Consult latest "List of lab material" spreadsheet for current or alternative suppliers and part numbers.

- 1. Required consumables (Brand, product number)
- 2. Chemicals purity (Brand, product number)

SOLUTIONS AND BUFFERS

Conc. solution name (for volume ml.)

- In a suitable vessel add the following
 - diluent
- 2. Stirto mix.
- Other details

METHOD |

NOTES |

General important recommandations.

TITLE

subtitle

Description of the methods steps Bla.

TITLE

1. Other step description of the process

APPENDIX

Additional informations useful for the procedure

SOP No: SOPS PR x-vD

SOPs: Requirements

- Protected document: only the final version is available
- Copies allowed but restricted and mentioned
- Version must change when modifications are necessary, versioning system should be established

SOPs: Requirements in collaborations

- Accessible to all partners
- Reproducible
- Same SOPs for same procedures
- Allocation to samples and probes
- Comparable results

Electronic sample book

Electronic Sample Book

- Sample record and tracking
 - Sample analysis
 - Ranges of acceptance
 - Certificates of Analysis, result sheets and other accompanying documents
 - Complete tracking of probes
- Exchange of results and protocols
 - Tests performed
 - Procedures
 - Results obtained

Electronic sample book

Combined solution

PRUSSIAN BLUE METHOD FOR IRON QUANTIFICATION IN SPION FORMULATION

	Function	Name	Date / Signature	
Author	Document control	Marie-Gabrielle Beuzelin Ollivier	Jewlin	
Approvals	Director LTP	Pr Heinrich Hofmann	Vllat-	
SOP No.	SPIONs PR 1	4-1		
Becomes effective on	30.08.2012			
Document bein replaced	9 _			

SUMMARY

This following protocol describes the colorimetric method use for γ FE₂O₃ SPIONs iron concentration estimation. It is based on reaction between ferric chloride (after dissolution of SPIONs with 6M HCl into Fe³⁺) and ferrocyanide that lead to the formation of Prussian blue (blue color):

Fe³+ (from dissolved SPION) + $K_4Fe^{2+}(CN)_6$, 3 $H_2O \rightarrow [Fe^{3+}_4(Fe^{2+}(CN)_6]_3$

The higher is the iron (ferric iron) content the darker will be the staining. The detection limit of this method is 5-10µg Fe/mL.

MATERIALS REQUIRED

INSTRUMENTS

- 1. Water purification system
- 2. Incubator 37°C, 5% CO₂
- Centrifuge
- 4. Plate shaker (Eppendorf, Thermomixer)
- 5. Plate reader (Tecan, Infinite 200)

CONSUMABLES

Consult latest "List of lab material" spreadsheet for current or alternative suppliers and part numbers

chemicals

- 1. Cell line see SOP Cells PR
- 2. SPIONs suspension see SOP SPIONs PR 1.1 SPIONs Synthesis
- 3. Hydrochloric acid (HCI) 37% for analysis (CAS 7647-01-0)
- Nitric acid (HNO₃) 65% for analysis (CAS 7697-37-2)
- Chlorure de Fer III I lexahydrate (FeCl₃, 6H₂O), 98-102% (CA3 10025-77-1)

Confidential

- 6. K₄Fe(CN)₈.3H₂O, 98.5-102% (CAS 14459-95-1)
- 7. DI water

SOP No: SPIONs PR 14-1

8. DPBS 1X (GIBCO, cat 14190)

Page 1 of 4

ESB - Electronic Sample Book

Home | Show property processes

NDR Sample Tracking: Show all processes

<u>Title</u>	<u>Sample</u> <u>Type</u>	Description	Author
Iron	Nanoparticle	Iron quantification of a SPION suspension by the Prussian Blue Method	EPFL
Quantification in SPION by Prussian Blue	<	Documente: SPIONs_PR_14-1_Prussian_blue_method_for_Iron_quantification_in_SPION_formulation.pdf	>

Strategies to meet the challenges

- Establishing SOPs following a clear composition
- Establishing rules for document filing
- Using electronic solutions for structured storage and exchange of results and protocols
- We hope this will increase the scientific value of the results of NanoDiaRA, and that they can serve as a standard for upcoming projects.

Acknowledgments

- The authors are supported by the FP7 project NanoDiaRA.
- Thank you to Margarethe Hofmann-Amtenbrink (MatSearch Consulting), Heinrich Hofmann (EPFL) and Francois Roubert (University of Westminster) for the valuable input and support.

Thank you for your attention.