Knee Cartilage Thickness Change within 5 Years after an ACL Tear:
With and without Reconstructive Surgery

F. Eckstein¹, W. Wirth¹, M. Hudelmaier¹, L.S. Lohmander², R. Frobell²

¹Paracelsus Medical University, Salzburg, Austria & Chondrometrics GmbH, Ainring, Germany; ² Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
Background

- An ACL tear (ACLT) is a serious and common knee injury.
- It mainly affects young active adults.
- In the long term, the risk of OA incidence is increased:
 - due to the acute trauma
 - due to chronic unfavorable biomechanical conditions
- Little is known about the structural changes in cartilage following ACL injury.
The KANON Study

- 121 young adults: ACL tear after trauma to uninjured knee
- Primary analysis: comparison of clinical outcomes (KOOS) between patients randomized to:
 - Early ACL reconstruction and structured rehabilitation or
 - Structured rehabilitation with optional delayed ACL reconstruction
- No significant differences after 2 years (Frobell et al. N Engl. J. Med. 2010) or after 5 years (Frobell et al. BMJ 2013).
To determine rate of change in (subregional) cartilage thickness after ACL injury:

- in the early phase (BL → 2 y follow up)
- in an intermediate phase (2 → 5 y follow up)
- stratified by treatment group
Study Design

- **Demographics**
 - 24% female participants
 - Age: 26 ± 5 years
 - BMI: 24.2 ± 3.0 kg/m²

- **Sagittal FLASH (1.5T)**
 - 1.5mm x 0.29mm x 0.29mm

N= 107 (of 121) subjects with complete data
Methods

- Pair-wise segmentation of articular cartilages (blinding to tpt):
 - **Tibia**: Medial & lateral (MT/LT) each 5 subregions
 - **Femur**: central 75% of medial & lateral condyle (cMF/cLF) each 3 subregions
 - → Medial and lateral compartment (MFTC/LFTC) each 8 subregions

- Computation of cartilage thickness (ThCtAB)
Descriptive Results

Total Femorotibial Joint (FTJ)

Mean [95% CI] {SRM}

\[\text{BL} \rightarrow \text{Y2}: \]
\[+58 \mu m [1.0;116] \]
\[+0.7\% \]

\[\text{Y2} \rightarrow \text{Y5}: \]
\[+95 \mu m [50;140] \]
\[+1.2\% \]
Descriptive Results

\[N = 107 \]

Error bars = 95% CIs

\[\uparrow \text{MFTC} > \uparrow \text{LFTC} \]

: p<0.01; *: p<0.001 (paired t-test)
Medial femorotibial compartment (MFTC)

- crude test $p \geq 0.18$ t-test
- adjusted $p \geq 0.16$ ANCOVA adj. for age, sex & BMI

![Graph showing mean change ± 95% confidence intervals](image)

- N=57
- N=24
- N=25

- early ACLR
- Rehab only
- delayed ACLR

Mean change ± 95% confidence intervals

BL→Y2 Y2→Y5
Stratification / Treatment Group (OV1)

- OV1: Early ACLR >> rehab only / BL → Y2 (crude/adj.p=0.02/0.02)
- OV1: Early ACLR (>) rehab only / Y2 → Y5 (crude/adj.p≥ 0.09/0.14)
- OV 1: Delayed ACLR (>) rehab both periods (crude/adj. p>=0.08/0.09)

![Graph showing mean change and 95% confidence intervals for different groups with N values: 57, 24, 25.](image)
Stratification / Treatment Group (OV16)

- OV16: Early ACLR >> rehab only / BL → Y2 (crude/adj.p=0.04/0.03)
- OV16: Early ACLR = rehab only / Y2 → Y5
- OV 16: Delayed ACLR > rehab both periods (crude/adj. p>=0.07/0.04)
Conclusions & Discussion

- Increase in (MFTC) cartilage thickness observed over early (BL→Y2) and intermediate (Y2→Y5) follow-up
- Reasons for the (MFTC) cartilage thickness may be:
 - Cartilage swelling (early degenerative change)
 - Cartilage hypertrophy (tissue adaptation)
 - Normal growth? Healthy (young) reference group required!
- Greater magnitude of subregional cartilage loss in knees with early ACLR than in knees Rehab only (BL→Y2)
- Trend less clear @ Y2→Y5
- ACLR surgery may induce acute subregional cartilage thickness loss
- Based on the current data, no clinical or structural benefit of ACLR vs. Rehab only @Y2 or Y5
The KANON was funded by: Swedish Research Council, the Medical Faculty of Lund University, Region Skåne, Thelma Zoegas Fund, Stig & Ragna Gorthon Research Foundation, Swedish National Centre for Research in Sports, Crafoord foundation, Tore Nilsson research fund, and Pfizer Global Research.

Quantitative cartilage analyses were funded as part of NanoDiaRa project (EU 7th framework programme for research, NMP4-LA-2009-228929, http://nanodiara.eu)