Disease-regulated Local Interleukin-10 Gene Therapy Diminishes Synovitis and Articular Cartilage Damage in Experimental Arthritis

ACR 2013, San Diego

30-10-2013 9:30
No disclosures
Rheumatoid Arthritis

- The majority of RA patients (70%) show progression of disease, often with pauses.

- About 15% of people with rheumatoid arthritis have disease that waxes and wanes slowly.

- Conventional treatment includes biological drugs:
 - repeated administration – invasive
 - systemic administration - side effects
 - long-term treatment - even during remission
Objective

To develop a gene therapeutic approach for disease-regulated delivery of biologics

- local delivery - viral transduction synovium/resident cells
- Long-term expression – mammalian promoters/ integrating vectors
- Only production during active disease - promoters of inflammation reactive genes
Search promoters of disease-inducible genes

- Microarray of synovial tissue of mice with collagen induced arthritis
- Selection of genes upregulated during arthritis
- Prediction of regulatory elements on their transcriptional promoter
- Clone proximal promoter into viral expression vectors
Validation: in-vivo profiling of selected promoters

- 300 ng lentivirus intra-articular in knee joint
- Induction SCW arthritis 4 days after transduction.
- Imaging at day 0, 1, 4, 7 and 9
Kinetics of promoter-luciferase expression
Promoter of serum amyloid A3 was selected

- Highest fold induction (120x)
- Rapid activation at day 1 of arthritis
- Reporter expression remains high during synovitis

Next: Replace luciferase transgene for an antiinflammatory gene
Saa3-regulated IL-10 gene therapy

IL-10 has pleiotropic anti-inflammatory effects:

- Produced by Th1, Th2, B-cells, monocytes, macrophages
- Inhibits antigen-presentation (MHCII, costimulatory antigens)
- Capable of inhibiting synthesis of pro-inflammatory cytokines such as IFN-γ, IL-2, IL-3, TNFα and GM-CSF
- Can block NF-kB and STAT-activation
- SOCS3 and IL-1Ra
- Short half-life in serum: between 1.1 – 2.6 hours
To prevent uncontrolled production the Saa3 promoter should not be activated by IL-10

- Stimulation of lentiviral transduced NIH-3T3 fibroblast cells
 - Transduced with LV.Saa3-Luc (50 ng p24gag equivalents/well)
 - Stimulated for 6 hours with IL-10 (10 ng/ml), SCW (5µg/ml) or combination
 - IL-10 did not activate the Saa3 promoter

![Graph showing RLU levels for Medium, IL-10, SCW, and IL-10/SCW](image)
Experimental setup arthritis experiment

- Day -4 = i.a. injection lentivirus (300 ng p24)
 - PGK-Empty (virus control, Phosphoglycerate kinase promoter)
 - PGK-IL10 (positive control)
 - Saa3-IL10
- Day 0 = i.a. injection SCW (25µg)
- Day 1,4,7 = isolation knee joint / synovium for histology or RNA isolation + serum for cytokine analysis
IL-10 overexpression

- Transgene RNA expression at day 1, 4 and 7 in the arthritic joint
- IL-10 expression at all days → Saa3 promoter is upregulated
IL-10 overexpression

- Transgene expression at day 1, 4 and 7 in the arthritic joint
 - IL-10 expression at all days \rightarrow Saa3 promoter is upregulated

- Saa3 promoter shows selective and inducible response in the arthritic joint
Histology at day 4

Day 4 after SCW

- Synovitis decreased at day 4
Cartilage damage at day 4 and 7

- Proteoglycan (PG) loss decreased at day 4 and 7
Effects of IL-10 overexpression on synovial cytokine production and gene expression

- Reduced IL-8 (KC) production at day 1 of arthritis by IL-10 overexpression
 - A neutrophil attractant that plays an important role in pathogenesis of arthritis
IL-10 induced synovial expression of IL-1Ra and SOCS3

- SocS3 inhibits JAK/STAT pathway and subsequent inflammation → less synovitis (Henningsson et al., 2012)

- IL1Ra counteracts detrimental effects of IL-1 on cartilage damage → less PG depletion (Kuiper et al., 1998)
Endogenous IL-10 is expressed early in disease!

TABLE 1. Joint swelling, inhibition of cartilage PG synthesis and levels of cytokines during SCW arthritis

<table>
<thead>
<tr>
<th></th>
<th>Joint swelling (R/L ratio)</th>
<th>Inhibition of PG synthesis</th>
<th>IL-1β (pg/ml)</th>
<th>TNF-α (pg/ml)</th>
<th>mIL-10 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 h</td>
<td>ND</td>
<td>ND</td>
<td>100 ± 20</td>
<td>420 ± 50</td>
<td><4</td>
</tr>
<tr>
<td>6 h</td>
<td>ND</td>
<td>−2 ± 4%</td>
<td>1190 ± 390</td>
<td>180 ± 40</td>
<td>23 ± 6</td>
</tr>
<tr>
<td>day 1</td>
<td>1.81 ± 0.11</td>
<td>−49 ± 6%</td>
<td>490 ± 120</td>
<td><40</td>
<td><4</td>
</tr>
<tr>
<td>day 2</td>
<td>1.49 ± 0.04</td>
<td>−43 ± 5%</td>
<td>150 ± 20</td>
<td><40</td>
<td><4</td>
</tr>
<tr>
<td>day 4</td>
<td>1.21 ± 0.09</td>
<td>−21 ± 4%</td>
<td>120 ± 17</td>
<td><40</td>
<td><4</td>
</tr>
</tbody>
</table>

Unilateral arthritis was induced by intraarticular injection of 25 μg SCW into the right knee joint of naive mice. Joint inflammation was quantified by the 99mTc uptake method and the chondrocyte PG synthesis was assessed in patellae by 35SO$_2^-$ incorporation ex vivo as described in Materials and Methods. The levels of IL-1β, TNF-α, and IL-10 in patellae washouts were measured by radio-immunoassays (RIA) and ELISA, with a detection limit of 20, 40 and 4 pg/ml, respectively. (ND = not done).

MMP13-IL10 could be as effective
MMP13-IL10

SCW control virus

SCW MMP13-IL10 virus

e
Histological score

<table>
<thead>
<tr>
<th>Day 4 syn</th>
<th>Day 7 syn</th>
<th>Day 4 PG dep</th>
<th>Day 7 PG dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.5</td>
<td>1.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Empty

MMP13
Implications for gene therapy in RA

- The disease-inducible promoters Saa3 and MMP13 are as effective as the constitutive PGK promoter for local expression of anti-inflammatory IL-10 and ameliorating SCW arthritis.

- In SCW arthritis, there is no need to overexpress IL-10 before onset of disease and can even be postponed to day 1 after disease onset as seen with the MMP13 promoter-vector.

- Disease regulated promoters can be used to temporal expression of biologics to enhance the therapeutic efficacy and limit side effects.
Acknowledgements

Department of Rheumatology
Radboud University Medical Centre, Nijmegen, the Netherlands

- E. A. Vermeij
- M. Broeren
- M.B. Bennink
- A.J. Arntz
- I. Gjertsson

Institute of Medicine, University of Gothenburg, Sweden,