EFFECTS OF DIFFERENT SURFACE CHARGE BASED SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES (SPION) ON BIODISTRIBUTION IN RAT AND EX VIVO PROTEIN FISHING <u>Usawadee Sakulkhu</u>¹, Lionel Maurizi¹, Azza Gramoun², Marie-Gabrielle Beuzelin¹, Géraldine Coullerez¹, Jean-Paul Vallée², Heinrich Hofmann¹ ¹Powder Technology Laboratory, École Polytechnique Fédérale de Lausanne, CH1015 Lausanne, Switzerland Departement of Radiology, University of Geneva and Geneva University Hospital 1211 Geneva 14, Switzerland Nanosafe 2012, 13th to 15th November 2012 Minatec, Grenoble, France ### Outline - * Introduction - * Materials and Methods - * Results and Discussion - * Summary #### Introduction: Absorption, distribution, metabolism and excretion of Nanoparticle (ADME) #### Introduction: #### SuperParamagnetic Iron Oxide Nanoparticles (SPION) #### **SPION Applications** #### **Particle characteristics:** - Primary crystalline iron oxide particles (γ–Fe₂O₃, maghemite) - Mean diameter of 8±1nm (TEM) - Superparamagnetic behaviour at room temperature - Single particles, beads - Characterization in vitro - Application in vivo A. Petri-Fink, H. Hofmann, NanoBioscience, IEEE Transactions on, 6/4,2007; 289. D. Hellstern, et al, J. Nanoscience and Nanotechnology, 6/9-10, 2006; 2829. #### Aim * To investigate the effects of different surface charge SPION on biodistribution in Rat and adsorbed protein fishing. Polyvinyl alcohol (PVA): Nanoparticle characteristics (at pH7.4) | Functional
group | Hydrodynamic
size (nm) | Zeta potential
(mV) | Charge | |---------------------|---------------------------|------------------------|----------| | -NH2 | 90±31 | +13±3 | Positive | | -OH | 95±18 | +6±1 | Neutral | | -COOH | 91±22 | -15±1 | Negative | #### Results - * Biodistribution (Magnetic susceptibility) - * Biodistributions: Positively charged, Neutral, Negatively charged Nanoparticles at 15 min - * Biodistributions: Positively charged Nanoparticles at 15 min and 7 days - * Protein fishing (SDS-PAGE) ### Results: #### Organ list for Biodistribution by Magnetic susceptibility | Sample | Information | | |-------------------------|---|--| | Whole blood cells | Blood | | | Serum | | | | Heart | Circulation | | | Brain | Evidence of NP across Blood brain barrier | | | Thymus | Immune system (T-Lymphocyte) | | | Lung | Respiratory system | | | Liver | Reticuloendothelial system (RES) | | | Spleen | | | | Stomach | Digestive system | | | Intestine (small+large) | | | | Kidney | | | | Bladder | Renal Clearance | | | Bladder content (Urine) | | | #### Result: Biodistribution of 3 different charged nanoparticles at 15 min post-injection - Almost 100% of SPION injected dose were recovered. - Nanoparticles are mainly found in Liver and Serum. - Slightly positive and negative have similar behaviour. #### **Result:** Biodistribution of **Positively** charged nanoparticle at 15 min and 7 days post-injection - At 7 days post-injection - 30% of SPION injected dose was detected - 90% of detected SPION located in Liver and No SPION was detected in blood. ## Results: SDS-PAGE (silver staining) #### Positively charged NP at 7 days - Common protein at 66 kDa - Neutral and Negatively charged nanoparticles share the similar pattern of protein adsorption. - From the intensity of the bands, detected proteins are correlated to SPION amount in serum. ## Summary Different surface charged PVA coated SPION - * Neutral and Negatively charged Nanoparticles have a similar behaviour on Biodistribution and Protein adsorption. - * Neutral and Negatively charged Nanoparticles seems to stay longer in blood stream compare to Positively charged nanoparticles. - 60% of Positively charged nanoparticle decreased after 7 days post-injection. - Protein fishing can be correlated to the biodistribution. ### Acknowledgements - * Swiss National Science Foundation (SNSF: 205321-120161) - * European Project FP7 (NanoDiaRA) ## Thank you very much for your attention