Quantification of inhomogeneous iron oxide uptake in a model of AIA in rat.

L A Crowe1, A Gramoun1, W Wirth2, F Tobalem3, K Grosdemange4, J Salaklang5, A Redgem5, A Petri-Fink6, F Eckstein7, H Hofmann7, and J P Valére1

1Radiology / Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland, 2Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria, 3Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland, 4Faculty of Medicine, University of Geneva, Geneva, Switzerland, 5Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland, 6Adolphe Merkle Institute and Chemistry Departement, Université de Fribourg, Fribourg, Switzerland, 7Institute of Materials, Powder Technology Laboratory, EPFL, Lausanne, Switzerland

Purpose
Iron oxide nanoparticles (SPION) as MRI contrast agents target macrophages in antigen -induced-arthritis (AIA) in rat. SPION are easily detectable on MRI as dark regions, but quantification in vivo remains extremely challenging. We developed and validated a method for SPION measurement based on positive contrast dUTE with a semi-automated segmentation and quantification software.

Context
Quantifying SPION uptake with conventional signal loss images is difficult due to early signal saturation. Heterogeneous nature of both the components of the natural progression of the disease and the biodistribution of contrast agents justified the development of a semi-automated segmentation method. This poster describes in vivo quantification of SPION uptake after intra venous injection in the clinically relevant antigen-induced arthritis (AIA) model in rat.

Following on from a previously published concept study with single region measurements of mean signal intensity after i.a injection (3) where the monotonous signal increase was proportional to the iron concentration, we assess now by 3D semi-automated quantification an in vivo SPION signal and irregular uptake after i.v injection.

We used the dUTE positive contrast method for image acquisition and home built software for automatic segmentation to give pixel intensity histograms to allow quantification of both size and intensity of the SPION biodistribution in the knee.

Observations: Images
Figure: Manual (left) and semi-automatic (right) segmentation in slices of inhomogeneous regions of uptake (n=16). Both axes show pixel intensity*number of pixels. Dotted line: y=x; solid line: fit of data showing excellent agreement (p<0.0001).

The images of UTE, TE2 and dUTE show a snapshot of the software with simultaneous segmentation of both echoes and the subtraction image. The automatic method was successful in all the cases and took around 20 minutes per knee: about 3 times faster than manual segmentation.

Figure: Coronal slice from 3D dUTE of arthritic knee (A) showing SPION uptake after iv injections of Tmg given 5 days before imaging in AIA rat showing two different parts of the synovium with uptake in the medial side of the knee and in the bone marrow. The right hand image (B) shows only the cortical bone as hyperintense signal (less than SPION intensity) in a control knee without SPION injection.

Figure: In-vivo results showing synovial iron uptake (after 50uL iv injection) emphasizing both the enhanced sensitivity to concentration from the slope and the contrast due to the separation of the iron signal from muscles and bone. Error bars 95%.

Observations: Results
The images of UTE, TE2 and dUTE show a snapshot of the software with simultaneous segmentation of both echoes and the subtraction image. The automatic method was successful in all the cases and took around 20 minutes per knee: about 3 times faster than manual segmentation.

Figure: Correlation between manual and semi-automatic segmentation in slices of inhomogeneous regions of uptake (n=16). Both axes show pixel intensity*number of pixels. Dotted line: y=x; solid line: fit of data showing excellent agreement (p<0.0001).

Two repeated measurements using the automatic method on the same subject gave a whole 3D integral difference of less than 10% for all slices. Variation of up to 200% was seen between animals with different disease severity (measured over a group n=9). Our reproducibility for repeated measurements was well below these differences we detected with mild, moderate and severe disease.

Methods
All particles described in this work were amino-PVA-SPIONs provided by EPFL, Lausanne, and University of Fribourg (7).

Animal model: Female Lewis rats (Janvier, France, weighing 150-175g, age 2 months) were used in this study. Ethical committee approval was obtained for the protocol and animals were kept in the institutions animal facility with free access to food and water. Rats (n=23) with antigen-induced arthritis in the right knee were given Intravenous injection of 7mg iron oxide on day 5 after AIA induction. Intra-venous (iv) injections gave a low, unknown and irregular uptake in the synovium with a complex shape that requires 3D quantification.

Magnetic Resonance Imaging: Scanning used a Siemens Magnetom Trio 3T clinical scanner and the manufacturers 4cm loop coil. The protocol included 3D T1 gradient echo (VIBE) with parameters:

TR/TE 14.3/5.9ms, fat angle 12°, fat suppression, isotropic resolution 0.31mm, and FOV 100mm. Quantifiable iron oxide particle detection by dUTE MRI (4) consisted of simultaneous acquisition and subtraction of two echo times leading to positive contrast from short T2* species and reduced signal elsewhere. Parameters were: 3D isotropic resolution of 0.18mm, an 80mm FOV, 50000 radial projections, UTE/TE2 0.07ms/2.46ms (for in-phase fat/water image), TR 9.6 ms and flip angle 10°.

Image analysis: The new analysis software allowed segmentation of the two simultaneously acquired UTE and TE2 images and the dUTE positive contrast iron oxide image. Important features of the software included: semi-automatic segmentation (thresholding: a single pixel click filled a region using intensity threshold and a radius constraint), quantification of volume and signal intensity for both echoes and the difference image with the segmentation and export of signal intensity measurements for further analyses in statistical software. The semi-automatic threshold method selected regions within a defined radius of similar intensity around a user-defined point and this was repeated for the regions of SPION in 3D. A histogram of pixel intensities as well as mean value and total volume were reported. Manual segmentation (n=16) was used as a gold standard for the validation of the analysis software.

Correlation was good between measurements of manual and semi-automatic segmentation in heterogeneous regions of uptake (n=16) and there was no difference between manual and automatic segmentation for a single region of SPION uptake. Automatic segmentation avoided pixels within the region that were not of the required intensity to indicate SPION, especially when the SPION formed a contour around the synovium. The shape of the uptake could be more clearly represented on the automatic segmentation (unless done by manually selecting individual pixels - a method that would be prohibitively time consuming).

Observations: Quantification
Correlation was good between measurements of manual and semi-automatic segmentation in heterogeneous regions of uptake (n=16) and there was no difference between manual and automatic segmentation for a single region of SPION uptake. Automatic segmentation avoided pixels within the region that were not of the required intensity to indicate SPION, especially when the SPION formed a contour around the synovium. The shape of the uptake could be more clearly represented on the automatic segmentation (unless done by manually selecting individual pixels - a method that would be prohibitively time consuming).

SPION biodistribution in the AIA knee is a complex process with heterogeneous accumulation of iron all over the synovium. As a result, the density of SPION varied in the pixels. Such variation is generally not assessable by traditional GRE T2* MR sequences used to evaluate the SPION distribution due to the saturation induced by the signal drop resulting from even small amounts of iron inducing heterogeneous local B0.

The dUTE sequence offered the advantage of positive, concentration dependent signal - useful in the case of heterogeneous iron distribution such as after intra-articular injection of SPION. Therefore, it became possible with dUTE to quantify both the number and the intensity of the pixels where the SPION were distributed. The total “iron quantification” integral gave a more complete assessment of the irregular SPION uptake than just their distribution volume or mean intensity.

A second advantage of the dUTE sequence was provided by the segmentation options related to the uptake could be more clearly represented on the automatic segmentation (unless done by manually selecting individual pixels - a method that would be prohibitively time consuming).

Discussion
SPION biodistribution in the AIA knee is a complex process with heterogeneous accumulation of iron all over the synovium. As a result, the density of SPION varied in the pixels. Such variation is generally not assessable by traditional GRE T2* MR sequences used to evaluate the SPION distribution due to the saturation induced by the signal drop resulting from even small amounts of iron inducing heterogeneous local B0.

The dUTE sequence offered the advantage of positive, concentration dependent signal - useful in the case of heterogeneous iron distribution such as after intra-articular injection of SPION. Therefore, it became possible with dUTE to quantify both the number and the intensity of the pixels where the SPION were distributed. The total “iron quantification” integral gave a more complete assessment of the irregular SPION uptake than just their distribution volume or mean intensity.

A second advantage of the dUTE sequence was provided by the segmentation options related to the positive signal. By removing artifactual hypointense regions in the image and improving delineation of the iron-enhanced synovium from the cortical bone, semi-automated segmentation of iron became possible.

The efficiency of the semi-automated segmentation was well illustrated by the validation against manual segmentation.

Conclusions
We demonstrated 3D quantification of irregular SPION uptake with robust, easier and faster assessment using semi-automated segmentation and dUTE, as applied to intravenous SPION uptake in arthritic rat knee.

References and Acknowledgements
11. This work has been supported by the NanoDioRA project, grant agreement number 228929 , funded by the EC Seventh Framework Programme FPT-NNMP-2008-1.
12. Work supported in part by the Center for Bioimaging (CIBM), Geneva and Lausanne, Switzerland.
13. Contact: Lindsey.crowe@hcuge.ch